ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ СТЭНЛИ

ОКП 421281

ПРЕОБРАЗОВАТЕЛИ ДАВЛЕНИЯ МАЛОГАБАРИТНЫЕ КОРУНД

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ КТЖЛ. 406233.001 РЭ

СОДЕРЖАНИЕ

	Стр
1. Введение	3
2. Назначение	3
3. Технические данные	4
4. Состав изделия	5
5. Устройство и работа	6
6. Обеспечение искробезопасности датчиков	10
7. Особые условия применения	10
8.Маркировка и пломбирование	
9. Упаковка	11
10.Общие эксплуатационные ограничения и меры безопасности	12
11. Установка датчиков	12
12. Обеспечение безопасности при эксплуатации датчиков	13
13. Подготовка к работе	14
14. Измерение параметров, регулирование, настройка	15
15. Поверка датчиков	15
16. Техническое обслуживание	19
17.Текущий ремонт	21
18. Транспортирование и хранение	22
18. Утилизация	22
ПРИЛОЖЕНИЕ А	
Схема составления условного обозначения датчика.	24
ПРИЛОЖЕНИЕ Б	
Наименование, модель и основные параметры датчиков	25
ПРИЛОЖЕНИЕ В	
Схемы внешних электрических соединений	27
ПРИЛОЖЕНИЕ Г	
Габаритные и присоединительные размеры датчиков КОРУНД	29
ПРИЛОЖЕНИЕ Д	
Схемы подключения датчиков при определении основной погрешности и вариации	32
ПРИЛОЖЕНИЕ Е	
Перечень оборудования	
и контрольно-измерительных приборов, необходимых для поверки датчиков	33

1. ВВЕДЕНИЕ

Руководство по эксплуатации содержит технические данные, описание принципа действия и устройства, а также сведения, необходимые для правильной эксплуатации преобразователей давления малогабаритных КОРУНД (далее по тексту - датчиков).

2. НАЗНАЧЕНИЕ

2.1. Датчики КОРУНД предназначены для работы в системах автоматического контроля, регулирования и управления технологическими процессами и обеспечивают непрерывное преобразование избыточного давления (КОРУНД-ДИ, ДИ-001, ДДИ), абсолютного давления (КОРУНД-ДА, ДА-001, ДДА), разрежения (КОРУНД-ДР, ДР-001, ДДР), давления—разрежения (КОРУНД-ДИВ, ДИВ-001, ДДИВ) и разности давлений (КОРУНД-ДД) жидких и газообразных сред, неагрессивных к материалам контактирующих изделий (нержавеющие сплавы типа ВТ9, 12Х18Н10Т и 42НХТЮ), в унифицированный токовый выходной сигнал.

Датчики КОРУНД-ДИ, КОРУНД-ДИ-001, КОРУНД-ДД и КОРУНД-ДДИ могут использоваться для измерения уровня жидкости в открытых или закрытых резервуарах, а КОРУНД-ДД - для измерения расхода жидкости или газа на сужающем устройстве. Применение датчиков КОРУНД-ДД в комплексе с блоком питания и извлечения корня БИКОР-01 позволяет получать линейную зависимость сигнала от расхода.

- 2.2. Датчики предназначены для работы с вторичными контрольно-измерительными, показывающими, регистрирующими, и регулирующими приборами, а также контроллерами и другими устройствами автоматики, работающими с входными сигналами 0-5мA, 4-20мA или 0-20 мA постоянного тока.
- 2.3. Датчики предназначены для работы при температуре контролируемой среды от -55°C до +100°C.
- 2.4. По степени защищенности от воздействий пыли и воды датчики имеют исполнения IP54 или IP65 (КОРУНД-хх-001 IP 65) по ГОСТ 14254-80. Датчики КОРУНД-хх-001 обладают повышенной коррозионной стойкостью корпус и штуцер выполнен из стали 12X18H10T.
- 2.5. По устойчивости к климатическим воздействиям датчики соответствуют исполнению УХЛ** категории размещения 3.1 согласно ГОСТ 15150-69, но для работы в диапазоне температур окружающей среды от -40 °C до +80 °C (основной вариант исполнения),

По желанию Заказчика датчики могут быть поставлены в исполнении У* категории размещения 1 но для работы в диапазоне температур от -55 °C до +80 °C.

- 2.6. Датчики, в зависимости от заказа, могут поставляться для работы во взрывоопасных и взрывобезопасных условиях.
- 2.7. Датчики с выходным сигналом 4-20 мА выполняются с видом взрывозащиты "Искробезопасная электрическая цепь" с уровнем взрывозащиты "взрывобезопасный" по ГОСТ Р 51330.0-99, ГОСТ Р 51330.10-99 и могут быть использованы для взрывобезопасных условий.
- 2.8. Датчики поставляются для работы при напряжении питания Uпит=16-36B, (для КОРУНД-хх-001 12...36B), причем, допустимые минимальные значения Uпит зависят от сопротивления нагрузки: Uпит.мин = (16+20•R) B, (для КОРУНД-хх-001 Uпит.мин = (12+20•R)).
- 2.9. При заказе преобразователя должно быть указано условное обозначение преобразователя. Условное обозначение преобразователей составляется по структурной схеме, приведенной в приложении А. Поставка преобразователей с пределами измерений в кг/см² или в других единицах измерения давления, производится по требованию потребителя, отраженному в заказе.

3. ТЕХНИЧЕСКИЕ ДАННЫЕ

- 3.1. Наименование датчиков различных моделей, пределы измерений, допускаемые давления и погрешности указаны в приложении Б. Датчики разности давлений, избыточного, абсолютного давления и разрежения поставляются с нижним пределом измерения, равным нулю. Датчики давления-разрежения поставляются с симметричным или несимметричным расположением нуля давления внутри диапазона. По предварительно согласованному заказу, нижний предел измерений может быть смещен при сохранении верхнего предела измерений и (или) диапазона данного датчика.
- 3.2. Пределы допускаемой основной погрешности датчиков, выраженные в процентах от диапазона изменения выходного сигнала, равны $\pm 0,15$; $\pm 0,25$; $\pm 0,5$; $\pm 1,0$ % в зависимости от модели (см. приложение Б) и заказа.
- 3.3. Вариация выходного сигнала датчика не превышает величины абсолютного значения предела допускаемой основной погрешности.
 - 3.4. Зона нечувствительности датчика не превышает 0,1% от диапазона измерений.
- 3.5. Преобразователи имеют линейно возрастающую характеристику выходного сигнала с предельными значениями выходных сигналов 0-5 мA, 4-20 мA или 0-20 мA постоянного тока (в соответствии с заказом).
- 3.6. Напряжение питания датчиков Uпит=16...36В (для КОРУНД-хх-001 Uпит=12...36В) с нестабильностью до \pm 2%, но не менее U_{пит}= (16+20 \bullet R_H), В (для КОРУНД-хх-001 Uпит=(12+20 \bullet RH)), для датчиков с сигналом 4-20мА, где RH- сопротивление нагрузки, кОм, включая сопротивление линии связи и барьера искробезопасности. Напряжение питания датчиков в искробезопасном исполнении имеют напряжение питания Uпит= 24 В.
- 3.7. Сопротивление нагрузки датчиков (с учетом линии связи и сопротивления барьера искробезопасности) должно быть:
 - в пределах от 0 до 2000 Ом- для преобразователей с выходным сигналом 0-5 мА;
 - в пределах от 0 до 1000 Ом для датчиков с выходным сигналом 4-20, 0-20 мА.
- 3.8. Датчики с выходным сигналом 4-20 мА могут имеют вид взрывозащиты "Искробезопасная электрическая цепь" с уровнем взрывозащиты "взрывобезопасный" (маркировка по взрывозащите 1ExibIICT5 X или 0 ExiaIICT5 X).
- 3.9. Схемы внешних электрических соединений датчиков приведены в приложении В: трехпроводная линия связи для преобразователей с выходным сигналом 0-5мA, 0-20 мА и двухпроводная линия связи для датчиков с выходным сигналом 4-20 мА).
- 3.10. Мощность, потребляемая датчиками с выходным сигналом 0-20ма, 4-20 мА, не более 1 ВА, а с выходным сигналами 0-5мА не более 0.54 ВА.
- 3.11. Датчики предназначены для работы при атмосферном давлении от 84,0 до 106,7 кПа (от 630 до 800 мм.рт.ст.).
- 3.12. Датчики устойчивы к воздействию температуры окружающего воздуха в диапазоне температур от -40 °C до +80 °C. Датчики выдерживают кратковременное (импульсное, скачкообразное с последующим спадом до рабочих условий) воздействие температуры контролируемой среды в пределах от -60 °C до +130 °C. При этом погрешность датчика за пределами диапазона рабочих температур не нормируется.
- 3.13. По устойчивости к механическим воздействиям датчики соответствуют виброустойчивому исполнению N3 по ГОСТ 12997-84. Дополнительная погрешность датчиков от воздействия вибрации не превышает ± 0.4 % от диапазона изменения выходного сигнала.
- 3.14. Дополнительная погрешность датчика, вызванная изменением температуры окружающего воздуха в рабочем диапазоне температур, выраженная в процентах от диапазона изменения выходного сигнала на каждые 10 °C, не должна превышать:
 - ±0,15% -при допускаемой основной погрешности ±0,15%;

- ±0.2% -при допускаемой основной погрешности ±0,25%;
- ±0,4% при допускаемой основной погрешности ±0,5%;
- ±0,5% при допускаемой основной погрешности ±1,0
- 3.15. Датчики устойчивы к воздействию относительной влажности окружающего воздуха 95% при +35 °C и более низких значениях температуры, без конденсации влаги.
- 3.16. Дополнительная погрешность датчика, вызванная воздействием внешнего переменного магнитного поля частотой 50 Гц и напряженностью 400 А/м или внешнего постоянного магнитного поля напряженностью 400 А/м, выраженная в процентах от диапазона изменения выходного сигнала, не превышает $\pm 0.4\%$.
- 3.17. Дополнительная погрешность от изменения напряжения питания при сопротивлении нагрузки по п. 3.7 не превышает 0.1% во всем диапазоне напряжения питания по п.3.6.
- 3.18. Дополнительная погрешность от изменения сопротивления нагрузки, указанного в п.3.7, не превышает 0.1%.
 - 3.19. Сопротивление изоляции электрических цепей датчика относительно корпуса не менее: 20 МОм при температуре окружающего воздуха плюс $(20\pm2)^{\circ}$ С и относительной влажности до 80%; 5 МОм при температуре окружающего воздуха плюс $(80\pm3)^{\circ}$ С и относительной влажности до 60%; 1 МОм при температуре окружающего воздуха плюс $(35\pm3)^{\circ}$ С и относительной влажности до 95%.
- 3.20. Датчики избыточного, абсолютного давления и давления-разряжения выдерживают давление перегрузки, указанное в таблицах Б1 и Б2 приложения Б, в зависимости от типа и модели датчика. Датчики разности давлений выдерживают перегрузку односторонним воздействием избыточного давления, указанного таблице Б1,- в зависимости от модели датчика. После перегрузки, в зависимости от времени ее действия и условий работы датчика, может потребоваться подстройка нуля.
 - 3.21. Норма средней наработки на отказ датчика 67000 ч.

4. СОСТАВ ИЗДЕЛИЯ

4.1. Комплект поставки датчика указан в таблице 1.

Таблица 1

Обозначение	Наименование	Количество	Примечание	
Согласно приложению А	Датчик давления КОРУНД (согласно приложению Б)	1	Поставляется в соответствии с заказом.	
КТЖЛ.406233.001. РЭ	Руководство по эксплуатации	1	Допускается поставлять 1 экз. на каждые 10 преобразователей.	
КТЖЛ.406233.001. ПС	Паспорт	1	Поставляется в случае	
	Ответная часть разъема	1	штепсельного электрического ввода.	
	Комплект монтажных частей	1	Поставляется в соответствии с табл. 2	

Модель преобразователя	Код комплекта	Состав комплекта
Корунд-ДИ, ДИ, ДИВ, ДР, ДА, мод.201208, все модели КОРУНД-хх-001.	ДИ01	Гайка M20x1,5; ниппель; прокладка.
Корунд-ДД, ДДИ, ДДА, ДДР, ДДИВ мод.101106.	ДД01	Скоба, кронштейн; крепежные детали.
	ДД02	Вентильный блок, скоба, кронштейн; крепежные детали.
	ддоз	Вентильный блок; фланец, прокладка, ниппель; скоба, кронштейн; ниппель, гайка M20x1,5.
	ДД04	Фланец, прокладка; ниппель, гайка M20x1,5; крепежные детали.
	ддо5	Скоба, кронштейн; крепежные детали; фланец, прокладка, ниппель, гайка M20x1,5.

5. УСТРОЙСТВО И РАБОТА

- 5.1. Датчики КОРУНД имеют первичный измерительный преобразователь и электронный блок со следующими исполнениями, которые зависят от измеряемой величины, пределов измерений и условий эксплуатации.
- 5.1.1. Малогабаритный датчик Корунд-ДИ, ДА, ДР и ДИВ, КОРУНД-хх-001, моделей 117-119,125,144,145, 134-135 (Рис.1) имеет штуцерный ввод давления и размещенные в едином корпусе мембранный тензопреобразователь и электронный блок.
- 5.1.2. Дифференциальный мембранно-рычажный датчик Корунд-ДД, ДДИ, ДДА, ДДР и ДДИВ моделей 101-104, 111-119, 121-124, 151-153 (Рис.2 и 3) имеет мембранный блок с расположенным в нем рычажным тензопреобразователем, а также электронный блок, жестко соединенный с горловиной мембранного блока.
- 5.1.3. Дифференциальный мембранный датчик Корунд-ДД, ДДИ моделей 105 и 106 (Рис.4) имеет мембранный блок-разделитель с расположеным в нем мембранным тензопреобразователем, а также электронный блок, жестко соединенный с горловиной мембранного блока.
 - 5.2.Устройство и работа малогабаритного датчика КОРУНД-ДИ, КОРУНД-ДИ-001 (см. Рис.1)
- 5.2.1. Датчик КОРУНД-ДИ выполнен в цилиндрическом корпусе (см. рис.1а) и содержит: штуцер 1; тензопреобразователь 2, снабженный мембраной с тензочувствительной структурой «кремний на сапфире» («КНС»); кожух 4 с крышкой 5; электронный блок 3 с подстроечными резисторами (потенциометрами) 6 и 7; вилку 8 разъема и заглушку 9, закрывающую полость преобразователя и доступ к подстроечным резисторам, необходимых для точной подстройки выходного сигнала нуля и диапазона.

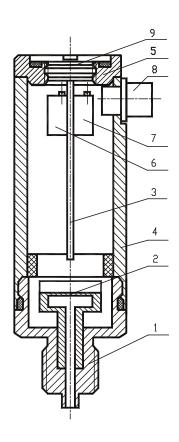


Рис. 1a. Малогабаритные датчики КОРУНД-ДИ, ДИВ, ДР, ДА. Модели 117-119, 125, 144-146, 134, 135

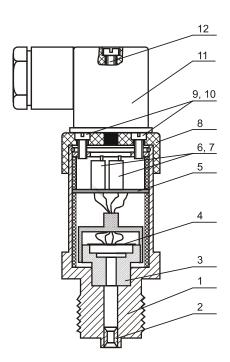
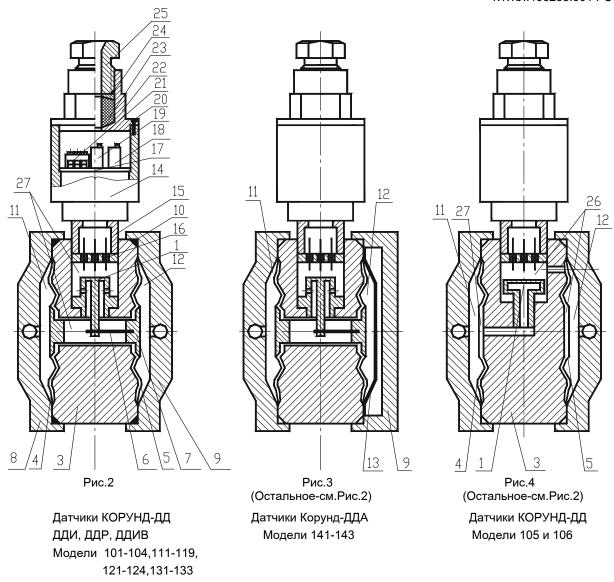



Рис. 1б. Малогабаритные датчики КОРУНД-(ДИ, ДИВ, ДР, ДА)-001. Модели 117001-119001, 125001, 144001-146001, 134001, 135001

5.2.2.Датчик КОРУНД-ДИ-001 (см.рис.16) выполнен в цилиндрическом корпусе из нержавеющей стали и содержит: цтуцер 1, выполненный монолитно с корпусом; дроссель 2; тензопреобразователь 3 с тензочувствительной структурой 4; электронный блок 5 с подстроечными резисторами 6 и 7; крышку 8, прикрепленную к корпусу посредством винтов 9 и 10 и присоединительный коннектор 11, фиксируемый на крышке винтом 12.

5.2.3. Работа датчика основана на проявлении тензоэффекта в структуре «КНС» при деформации мембраны тензопреобразователя 2 под действием измеряемого давления. Давление контролируемой среды, подаваемой через штуцер 1, деформирует мембрану тензопреобразователя 2 и связанную с ней сапфировую пластину, на которой сформированы кремниевые тензорезисторы, соединенные в четырехплечий мост. Изменение давления приводит к пропорциональной деформации тензоструктуры «КНС» и соответствующему разбалансу измерительного моста. На сигнальной диагонали тензомоста, питаемого постоянным током, формируется выходное напряжение, пропорциональное разбалансу тензомоста. Это напряжение преобразуется электронным блоком в выходной сигнал постоянного тока. Сигнал, через разъем 8 передается в линию связи, по которой осуществляется и питание датчика.

Принцип работы датчика КОРУНД-ДИ-001 аналогичен. Дроссель 2 служит для исключения негативного влияния на мембрану ударных воздействий жидких сред (явление гидроудара).

- 5.2.3. Датчики абсолютного давления (Корунд-ДА), избыточного давления и (или) разрежения (Корунд-ДИ, ДР, ДИВ) имеют следующие отличия. Абсолютное давление измеряется как разность между давлением контролируемой среды и постоянным опорным давлением (вакуумом). Избыточное же давление и (или) разрежение измеряются как разность давления среды и атмосферного давления (с учетом знака). Поэтому, в датчиках абсолютного давления полость опорного давления, находящаяся за входной мембраной, закрыта и вакуумирована, а в датчиках избыточного давления и (или) разрежения связана с атмосферой.
- 5.3. Устройство и работа дифференциального мембранно-рычажного датчика (рис 2 и 3, модели 101-104,111-119, 121-124, 151-153)
- 5.3.1. Датчик имеет двухмембранный блок с рычажным тензопреобразователем и снабжен унифицированным электронным блоком, выполненном в цилиндрическом корпусе, который жестко соединен с горловиной мембранного блока.

Рычажный тензопреобразователь 1 (см. Рис.2 и 3) размещен в замкнутой полости 2 основания 3 мембранного блока, заполненной кремнийорганической жидкостью, и отделен от измеряемой среды металлическими гофрированными мембранами 4 и 5. Рычаг тензопреобразователя 1 связан через ленточную тягу 6 с центральным штоком 7, соединяющим между собой жесткие центры мембран 4 и 5. Мембраны приварены по наружному контуру к основанию 3, защищены от внешней среды фланцами 8, 9 и уплотнены прокладками 10. Между мембранами и фланцами имеются две измерительные камеры 11 («+») и 12 («-»), со стороны которых на мембраны действуют два сравниваемых давления:

- 1) давления контролируемой среды от двух источников в датчиках разности давлений (Корунд-ДД, см. рис.2);
- 2) давление контролируемой среды и атмосферное давление в датчиках избыточного давления и (или) разрежения (Корунд-ДДИ, ДДР, ДДИВ, см. Рис.2, 4);
- 3) давление контролируемой среды и постоянное опорное давление (вакуум)- в датчиках абсолютного давления (Корунд-ДДА, см. Рис.3).

В датчиках КОРУНД-ДД (см. Рис.2) камеры 11 и 12 соединяются с линиями, подводящими к датчику сравниваемые давления, разность которых измеряется.

В датчиках КОРУНД-ДДИ, ДДР, ДДИВ (см. Рис.2, 4) плюсовая камера 11 соединяется с контролируемой средой, а минусовая камера 12 — с атмосферой. Принципиально эти датчики отличаются от датчиков КОРУНД-ДД градуировкой и конструкцией фланца со стороны подачи опорного давления. Кроме того, они не предназначены для работы с большими перегрузками как датчики КОРУНД-ДД (см. таблицы Б1 и Б2).

В датчиках Корунд-ДДА (см. Рис.3), одна камера (11, «+») сообщается с контролируемой средой, а вторая камера (12) герметизирована колпачком 13 и вакуумирована. Это обеспечивает измерение абсолютного давления контролируемой среды дифференциальным датчиком. В остальном, конструкция датчика выполнена аналогично датчику КОРУНД-ДД. Кроме того, датчик не предназначен для работы с большими перегрузками как датчики КОРУНД-ДД.

Электронный блок датчика (см. Рис.2) выполнен с цилиндрическим корпусом 14, закрепленным на горловине 15 мембранного блока при помощи резьбового соединения, и электрически связан с тензопреобразователем 1 через гермоввод 16.

В полости корпуса расположен электронный блок 17. На плате электронного блока установлены потенциометры 18 и 19 для подстройки «нуля» и «диапазона». Плата закрыта крышкой с отверстиями для доступа к движкам потенциометров18 и 19 и установленной колодкой 21 с клеммами для подсоединения проводов линии связи (кабеля).

К корпусу 14 винтами 20 привернута кабельная муфта 22 с сальниковым вводом, через который к датчику подсоединяется линия связи (кабель). Кабельная муфта выполнена с уплотнительным кольцом 23, шайбой 24 и штуцером 25, служащими для зажима и герметизации кабеля при подключении к датчику линии связи.

5.3.2. Работа датчика основана на тензоэффекте, рассмотренном в п.5.2.2 с некоторыми отличиями в первичном преобразовании. В зависимости от исполнения датчика, мембранный блок воспринимает разность двух рабочих давлений (датчики КОРУНД-ДД) перепад рабочего давления относительно атмосферного давления (датчики КОРУНД-ДИ, ДВ, ДИВ) или вакуума (КОРУНД-ДА). Разность или перепад давлений, подаваемых в камеры 11 и 12, вызывает прогиб мембран 4 и 5,

соответствующее перемещение штока 7 тяги 6, рычага тензопреобразователя 1 и пропорциональный этому перемещению разбаланс тензомоста, Ход рычага тензопреобразователя (0,4-0,6 мм) допускает одностороннюю перегрузку рабочим давлением, многократно превышающим измеряемую разность давлений. При перегрузке, мембраны 4 и 5 перемещаются, и одна из них ложится на упор профилированную поверхность основания 3. Электронный блок, подключенный через кабель и колодку 21 к линии связи, обеспечивает питание моста тензопреобразователя постоянным током и преобразование сигнала разбаланса моста в нормированный выходной сигнал.

- 5.4. Устройство и работа дифференциального мембранного датчика (рис 4, модели 105 и 106).
- 5.4.1. Датчик этой конструкции имеет двухмембранный блок с мембранным тензопреобразователем 1 и снабжен унифицированным электронным преобразователем, рассмотренным в п. 5.3.

Мембранный тензопреобразователь 1 размещен в замкнутой полости основания 3 мембанного блока, которая заполнена кремнеорганической жидкостью и разделена мебраной тензопреобразователя на две секции- 26 и 27. Давления в плюсовой и минусовой камере, передаются через разделительные мембраны 4, 5 и жидкость на мембрану тензопреобразователя с противоположных ее сторон. При этом, разность сравниваемых давлений деформирует мембрану тензопреобразователя, ее тензоструктуру и вызывает соответствующий разбаланс моста.

- 5.4.2. Работа датчика основана на тензоэффекте и электронных преобразованиях, рассмотренных в п.5.2. Давление на мембраны 4 и 5 передается на мембрану тензопреобразователя и несжимаемую жидкость практически без искажений, т.е. без погрешностей механической (рычажной) передачи. Однако это ограничивает возможную перегрузку односторонним давлением, не превышающим максимальное давление, которое выдерживает мембранный тензопреобразователь.
 - 5.5. Электронный блок датчиков КОРУНД.
- 5.5.1. Электронный блок датчиков (Рис.5) содержит следующие функциональные элементы: вторичный источник питания с источником опорного напряжения, обеспечивающий питание тензомоста, преобразователь выходного напряжения тензомоста в ток, цепь настройки «нуля» потенциометр 18, цепь настройки «чувствительности» («диапазона») потенциометр 19.

Выходной сигнал 4-20 (0-20) мА достигается тем, что напряжение снимается с нагрузочной цепи, ток которой не зависит от внешнего нагрузочного сопротивления Rн. Переход на такой сигнал достигается простым переключением контактов с подстройкой диапазона и нуля (перемычка S1 замкнута).

Для сигнала 0-5мА используется иное подключение выхода ПНТ (см. рис.5), при котором ток питания и сигнальный ток передаются по отдельным проводникам.

5.5.2. Схемы внешних электрических соединений преобразователя приведены в приложении В, где показаны различные варианты подключения датчиков к источнику питания и к нагрузке в зависимости от сигнала и условий взрывобезопасности.

6. ОБЕСПЕЧЕНИЕ ИСКРОБЕЗОПАСНОСТИ ДАТЧИКОВ

- 6.1. Искробезопасность электрических цепей преобразователя достигается за счет ограничения тока и напряжения в его электрических цепях до искробезопасных значений, а также за счет выполнения конструкции всего преобразователя в соответствии с требованиями ГОСТ Р 51330.0-99, ГОСТ Р 51330.10-99 и применения двухпроводной схемы с сигналом 4-20мА.
- 6.2. Ограничение тока и напряжения в электрических цепях до искробезопасных значений обеспечивается подключением датчика к источнику питания через барьер искробезопасности, который может быть поставлен в комплекте с датчиком в виде отдельного устройства или в составе блока питания.

7. ОСОБЫЕ УСЛОВИЯ ПРИМЕНЕНИЯ

- Знак **X**, стоящий после маркировки взрывозащиты, означает, что при эксплуатации датчиков давления необходимо соблюдать следующие **особые** условия:
- 7.1 Питание датчиков давления должно осуществляться через барьеры искрозащиты, имеющие сертификат соответствия Системы сертификации ГОСТ Р и разрешение на применение Ростехатомнадзора России для взрывоопасной газовой смеси категории IIC.

7.2. Входные искробезопасные параметры датчиков давления с учетом параметров соединительного кабеля не должны превышать электрические параметры, указанные на барьере искрозащиты: Ui = 24B, Ii = 30 мA, Li = 0.02 м Γ н, Ci = 0.08м κ Φ (ib).

Особые условия эсплуатации, обозначенные знаком X, должны быть отражены в сопроводительной документации, подлежащей обязательной поставке в комплекте с каждым датчиком давления.

8. МАРКИРОВКА И ПЛОМБИРОВАНИЕ

- 8.1. На табличке, прикрепленной к преобразователю, нанесены следующие знаки и надписи:
- товарный знак предприятия-изготовителя;
- -краткое наименование преобразователя: КОРУНД-... с условным обозначением типа датчика (ДД, ДИ, и т.п.);
- порядковый номер преобразователя по системе нумерации предприятия-изготовителя;
- обозначение климатического исполнения: УХЛ 3.1;
- пределы измерений с указанием единицы измерений;
- выходной сигнал, 0-5мА или 4-20мА или 0-20 мА;
- параметры питания;
- год выпуска.
 - 8.2. На потребительскую тару преобразователя наклеена этикетка, содержащая:
- товарный знак или наименование предприятия-изготовителя;
- условное обозначение преобразователя (по приложению А);
- год выпуска.
- 8.3. На отдельной табличке, прикрепленной к преобразователю, выполнена выступающая на высоту (0,2-0,5) мм маркировка по взрывозащите по ГОСТ Р 51330.0-99, на преобразователях, предназначенных для экспорта должны быть дополнительно указаны символ или сокращенное наименование испытательной организации по и номер свидетельства о взрывозащите.
- 8.4. Электронное устройство преобразователя, размещенное внутри корпуса, опломбировано на предприятии-изготовителе и недоступно для потребителя за исключением органов регулирования.

9. УПАКОВКА

- 9.1. Упаковывание производится в закрытых вентилируемых помещениях при температуре окружающего воздуха от 15 °C до 40 °C и относительной влажности воздуха до 80% при отсутствии в окружающей среде агрессивных примесей.
- 9.2. Перед упаковыванием отверстие штуцера, резьба штуцера, сальниковой муфты и разъема закрываются колпачками или заглушками.
- 9.3. Преобразователь помещен в потребительскую тару, которая затем помещается в чехол из полиэтиленовой пленки толщиной от 0,2 до 0,4 мм по ГОСТ 10354-82. На потребительскую тару перед укладкой в чехол наклеивается этикетка. Полиэтиленовый чехол заваривается. В потребительскую тару вместе с преобразователем помещается техническая документация.
- 9.4. Средства консервации соответствует ГОСТ 9.014-78. Предельный срок защиты без переконсервации -1 год.
- 9.5. Коробка в чехле уложена в транспортную тару деревянный ящик типа П-1 или Ш-1 ГОСТ 2991-85. Свободное пространство заполнено амортизационным материалом. Товаросопроводительная документация завернута в оберточную бумагу ГОСТ 8273-75 и вложена в чехол из полиэтиленовой пленки. В чехол вложен вкладыш с надписью "Товаросопроводительная документация", шов чехла заварен. Масса транспортной тары не превышает 20 кг.
- 9.6. В зимнее время ящики с преобразователями распаковывать в отапливаемом помещении не менее чем через 12 часов после внесения их в помещение.

10. ОБЩИЕ ЭКСПЛУАТАЦИОННЫЕ ОГРАНИЧЕНИЯ И МЕРЫ БЕЗОПАСНОСТИ

- 10.1. По степени защиты человека от поражения электрическим током датчики относятся к классу 01 по ГОСТ 12.2.007.0-75 и соответствуют требованиям безопасности по ГОСТ 12997-84.
- 10.2. Замену, монтаж, присоединение и отсоединение датчиков производить при отсутствии давления в магистралях, в измерительных камерах (полостях) датчика и при отключенном питании.
- 10.3. Не допускается эксплуатация датчиков в системах, в которых рабочее давление может превышать предельные значения, указанные в таблице приложения Б. Следует избегать действия на датчик давления перегрузки, выходящего за пределы измерений.
- 10.4. Эксплуатация датчиков должна производиться в соответствии с требованиями главы 7.3. ПУЭ, главы 3.4. ПЭЭП ("Правила эксплуатации электроустановок потребителей". АТОМИЗДАТ, 1992г.) и других нормативных документов, регламентирующих применение электрооборудования во взрывоопасных условиях.
- 10.5. Не допускается применение датчиков для измерения давления сред, агрессивных по отношению к материалам датчиков, контактирующим с этими средами;
- 10.6. Датчики с сигналом 4-20мА могут устанавливаться во взрывоопасных зонах помещений и наружных установках согласно главе 7.3. ПУЭ, главе 3.4. ПЭЭП и другим нормативным документам, регламентирующим применение электрооборудования во взрывоопасных условиях. Датчики с сигналом 0-20 мА и 0-5мА должны устанавливаться вне взрывоопасных зон.
- 10.7. Прежде чем приступить к монтажу датчиков необходимо осмотреть их, проверить маркировку по взрывозащите, заземляющее устройство, элементы крепления и соединения, целостность корпусов и, при необходимости, проверить (в принципе) не нарушена ли работоспособность датчиков при транспортировании и хранении.
- 10.8. Линия связи может быть выполнена любым типом кабеля с медными проводами сечением не менее 0,35 мм² согласно гл. 7.3. ПУЭ.
- 10.9. Корпус датчиков в искробезопасном исполнении необходимо заземлить, используя контур заземления, соединенный с преобразователем проводом с сечением не менее 1,5 мм². Сопротивление линии заземления не должно превышать 4 Ом. Заземление следует устанавливать при отключенном питании и отключенной линии связи.
- 10.10. Подсоединение и заделка кабеля производится при отключенном питании. По окончании монтажа проверьте сопротивление заземления.
- 10.11. При наличии в момент установки датчиков взрывоопасной смеси не допускается подвергать преобразователь трению или ударам, способным вызвать искрообразование.
 - 10.13. Подключение датчика выполняется согласно схемам внешних соединений (см. приложение Г).

11. УСТАНОВКА ДАТЧИКОВ

- 11.1. Датчики могут монтироваться в любом положении, удобном для монтажа и обслуживании.
- 11.2. Датчики типа КОРУНД-ДИ, КОРУНД-ДИ-001 (см. рис. Г1) рекомендуется устанавливать в вертикальном положении штуцером вниз и допускается устанавливать в ином положении, удобном для использования, если этого требуют особые условия эксплуатации.

Дифференциальные датчики (см. рис. Г2-Г4) рекомендуется устанавливать присоединительными отверстиями вверх или вниз, в зависимости от контролируемой среды, условий отбора давления, промывки рабочих камер и дренажа конденсата. При этом ось блока электроники и ось мембран должны располагаться горизонтально. Такое размещение дифференциальных мембранно-рычажных датчиков минимизирует воздействие гидростатической составляющей и массы подвижных частей (штока, рычага, мембран) на начальный сигнал датчика. При особых условиях эксплуатации допускается иная ориентация дифференциальных датчиков, при которой присоединительные отверстия и ось мембран располагаются горизонтально а ось горловины мембранного блока и блока электроники- вертикально или с наклоном. В любом случае, следует учитывать, что ориентация датчиков, особенно, мембранно-рычажных, может вызвать смещение и необходимость подстройки начального («нулевого») сигнала на величину, зависящую от действующих сил, чувствительности датчика и его наклона.

- 11.3. Подсоединение датчиков к источникам давления должно выполняться с соблюдением следующих правил и условий:
- 11.3.1. К магистрали давления датчики присоединяются с помощью (см. приложение Г) штуцерных или ниппельных соединений, уплотняемых фторопластовой лентой (ФУМ) или герметиками, стойкими и нейтральными к контролируемой и окружающей среде в реальных условиях эксплуатации. Перед присоединением к датчикам, линии давления должны быть продуты для снижения возможного загрязнения камер мембранного блока датчика.
- 11.3.2. При подсоединении датчиков к источникам давления (рабочим магистралям), не допускается перегрузки датчика давлением, выходящим за пределы измерений (см. приложение Б). Для этого входы датчика должны подключаться к линии давления через вентили (трехходовые краны, вентильные блоки), обеспечивающие проверку, отключение датчика от линии, соединение его с атмосферой или выравнивание давлений в «плюсовой» и «минусовой» линиях, подводимых к датчику разности давлений. По заказу потребителя, датчик разности давлений поставляется с вентильным блоком (см. приложение Г), который монтируется непосредственно на фланцах мембранного блока и обеспечивает перекрытие и возможность защиты датчика от односторонней перегрузки статическим давлением. При случайной перегрузке датчика давлением, выходящим за пределы рабочего диапазона, необходимо снять перегрузку и выдержать датчик до стабилизации показаний и, при необходимости, подстроить «ноль».
 - 11.3.3. Трубки, соединяющие датчик с местом отбора давления должны быть как можно короче.
- 11.3.4. Влияющие условия внешней и контролируемой среды должны иметь параметры в пределах, указанных в разделе 3.
- 11.3.5. Для эксплуатации датчиков в условиях с отрицательными значениями температуры, необходимо предусмотреть все возможные меры, исключающие накопление, замерзание, кристаллизацию конденсата, рабочих сред и ее компонентов в рабочих камерах и соединительных трубках.
- 11.3.6 Соединительные линии между местом отбора давления и датчиком должны иметь уклоны и, при необходимости, отстойные сосуды, газосборники и устройства продувки соединительных трубок. Уклон и комлектность дополнительных устройств выбираются в зависимости от контролируемой среды и других условий эксплуатации. Устройства отбора давления как правило должны иметь запорные органы (вентили, заглушки).
- 11.3.7 На линии соединения датчиков со средой, непосредственный контакт с которой недопустим или нежелателен (при несовместимости среды с материалами датчика и т.п.), следует устанавливать разделители (разделительные мембраны или сосуды), обеспечивающие совместимость контролируемой среды с материалами датчика.
- 11.3.8. Линии давления, вентили, сосуды и элементы их соединения между собой и с датчиками должны быть проверены на герметичность пробным давлением, не превышающим допустимых пределов измерений. Проверка должна осуществляться в соответствии с общими правилами безопасности. Проверить линию рекомендуется проверять рабочим давлением при перекрытых вентилями входах датчиков. Герметичность штуцерных и ниппельных соединений с датчиком проверяется допустимым (см. приложение Б) для датчика давлением рабочей среды в пределах рабочего диапазона измерений.
- 11.4. Подсоединение проводов линии связи к клеммам колодки или к кабельной части (розетке) разъема производится в соответствии со схемой электрических соединений (см. приложение В) с соблюдением правил раздела 12.

12. ОБЕСПЕЧЕНИЕ БЕЗОПАСНОСТИ ПРИ ЭКСПЛУАТАЦИИ ДАТЧИКОВ

- 12.1. К эксплуатации преобразователей должны допускаться лица, изучившие настоящую инструкцию и прошедшие необходимый инструктаж.
- 12.2. При эксплуатации преобразователей необходимо выполнять все мероприятия в полном соответствии с разделами 6 и 9, гл. 3.4, ПЭЭП. Необходимо выполнять местные инструкций, действующие в данной отрасли промышленности, а также другие нормативные документы, определяющие эксплуатацию взрывозащищенного электрооборудования.

- 12.3. При эксплуатации преобразователи должны подвергаться систематическому внешнему и периодическому осмотрам в соответствии с указаниями раздела 15
 - 12.4. При внешнем осмотре преобразователя необходимо проверить:
 - сохранность пломб;
 - наличие и надежность крепления электронного устройства;
 - отсутствие обрыва или повреждения изоляции соединительного кабеля;
 - правильность соединения и отсутствие обрыва заземляющего провода;
 - надежность присоединения кабеля;
 - отсутствие вмятин и видимых механических повреждений, а также пыли и грязи на корпусе преобразователя.
 - наличие маркировки взрывозащиты

Эксплуатация преобразователей с повреждением категорически запрещается!

12.5. При профилактическом осмотре должны быть выполнены все вышеуказанные работы внешнего осмотра. Периодичность профилактических осмотров датчиков устанавливается в соответствии с требованиями раздела 15.

При этом дополнительно должны быть выполнены следующие работы:

- чистка клемм и полостей электронного устройства преобразователя от пыли и грязи;
- проверка сопротивления изоляции электрических цепей преобразователя относительно корпуса мегаомметром с номинальным напряжением 500 В. Сопротивление изоляции должно быть не менее 20 МОм при температуре окружающего воздуха (+25±5) °C и относительной влажности не более 80%;
 - проверка и устранение нарушений в соединениях.
- 12.6. После профилактического осмотра производится подключение отсоединенных цепей и элементов, а сам преобразователь пломбируется.

Примечание!

Регулировка нуля выходного сигнала преобразователя на месте эксплуатации, требующая подключения блоков питания и контрольно-иэмерительных приборов, возможна только при отсутствии взрывоопасной смеси в момент проведения названной операции.

13. ПОДГОТОВКА К РАБОТЕ

- 13.1. Перед включением датчиков необходимо убедиться в соответствии их установки и подключения требованиям разделов 10-12.
- 13.2. Подключить по схеме приложения Д к выходной цепи датчика источник питания и прибор, позволяющий измерять выходной сигнал в пределах 0-5 мА, 4-20 мА или 0-20 мА с погрешностью не более 0,1 % от верхнего предела изменения выходного сигнала. Сигнал измеряется на нагрузочном сопротивлении, выбранном в соответствии с требованиями п.3.7.
- 13.4. Задать начальное значение давления на входе датчика, включить электропитание и, не менее чем через 30 мин, установить корректором "нуля" требуемое значение выходного сигнала датчика при данном* значении измеряемого параметра. Настройка начального значения выходного сигнала производится после подачи и сброса давления, составляющего 50-100% от верхнего предела измерений.

*Примечания:

- 1) начальное значение давления на входе датчиков задается при сбросе давления магистрали, перекрытием подводящей линии и соединением входа датчика с атмосферой;
- 2) в качестве контрольного давления для датчиков КОРУНД-ДА и -ДДА, может быть принято атмосферное давление, измеряемое барометром с основной погрешностью не хуже 0,3 от допускаемой погрешности датчика.

14. ИЗМЕРЕНИЕ ПАРАМЕТРОВ. РЕГУЛИРОВАНИЕ, НАСТРОЙКА

14.1. Датчик КОРУНД является однопредельным. Измерение параметров производится в соответствии со схемой приложения Д.

- 14.2. После установки датчика в рабочее положение согласно правилам раздела 12, или, при необходимости, на специально оборудованном стенде, настройку производите следующим образом:
- 14.2.1. Отверните заглушку 9 в крышке 5 малогабаритного датчика (Рис.1а), или снимите крышку 8, предварительно сняв коннектор 9 (Рис.1б), или снимите кабельную муфту 22, отвернув винты 20 дифференциального датчика (см. Рис.2,3 и 4) для доступа к корректору (потенциометру) "нуля" и "диапазона";
- 14.2.2. Включите питание и выдержите преобразователь во включенном состоянии не менее 5 мин.
- 14.2.3. Задайте на входе датчика нижний предел измеряемого давления (разности давлений) и подстройте корректором "нуля" соответствующее значение выходного сигнала для данной модели датчика (см. приложение Б).
- 14.2.4. Задайте верхний предел измеряемого давления (разности давлений) и, при необходимости, подстройте корректором "диапазона" соответствующее предельное значение выходного сигнала.
- 14.2.5. Выполните операции, указанные в п.п. 14.2.3 и 14.2.4, несколько раз до тех пор, пока значения выходного сигнала не будут установлены в требуемых пределах (см. раздел 15).
- 14.2.6. Проверьте основную погрешность преобразователя в соответствии с приложением Б и, если она выходит за допустимые пределы, повторите настройку по п.14.2.5.
- 14.2.7 Установите на место заглушку 9 малогабаритного датчика (см. Рис.1а) или крышку 8 (см. Рис.1б), или кабельную муфту 22 дифференциального датчика (см. Рис.2,3 м 4).
 - 14.2.8.Отсоедините средства настройки и приведите датчик в состояние рабочей готовности.

15. ПОВЕРКА ДАТЧИКОВ

15.1. Поверка датчиков осуществляется в соответствии с требованиями методических указаний МИ 1997-89, утвержденной ВНИИМС при ГОССТАНДАРТЕ РФ и настоящего руководства.

Периодическая поверка производится не реже одного раза в два года (межповерочный интервал-2 года) в сроки, установленные руководством предприятия в зависимости от условий эксплуатации, после ремонта датчиков и их восстановления (после отказа).

- 15.2. При подготовке к поверке и при ее проведении должны соблюдаться меры безопасности и требования, указанные в разделах 9-13.
 - 15.3. При поверке должны производиться следующие операции:
 - 1) внешний осмотр и проверка внешнего состояния датчика;
 - 2) подготовительные работы, включающие проверку герметичности системы и функционирования датчика;
 - 3) установка начального выходного сигнала датчика;
 - 4) проверка основной погрешности и вариации датчика.
- 15.4.Средства поверки должны соответствовать указанным в приложении Е. Допускается применять средства поверки других типов с параметрами, не хуже указанных выше.
- 15.5. При внешнем осмотре проверяются целостность корпуса, элементов соединений, пломб (стиккеров, бирок) а также соответствие маркировки конкретного экземпляра датчика сведениям, указанным в его паспорте и настоящем руководстве.
 - 15.6. При подготовительных работах необходимо выполнить следующие операции.
- 15.6.1. Установить датчик в рабочее положение (см. приложение Г) подключить к нему средства поверки (см. приложение Е) с соблюдением требований, предъявляемых к монтажу и эксплуатации датчика и в соответствии со схемами подключения (приложение Д).
- 15.6.2. Проверить герметичность системы, включающей соединительные линии, соединения и датчик. Проверку производить давлением, равным предельному номинальному давлению (перепаду давлений) поверяемого датчика. Систему и датчик считают герметичными, если после трехминутной выдержки под заданным предельным давлением (или разряжением), после перекрытия проверяемой части системы от задатчика давления, в течение последующих 2 мин в перекрытой части системе не

наблюдается изменение давления, или для датчика- изменения его сигнала.

15.6.3. Проверка функционирования датчика производится по изменению его сигнала при изменении давления в пределах диапазона измерения и по функционированию корректора нуля. При этом должны наблюдаться соответствие между давлением и сигналом, а также изменение сигнала при вращении винта корректора.

При проверке функционирования датчика допускается применять средства поверки, метрологические характеристики которых отличаются от образцовых средств, для проверки основной погрешности и вариации (см. п.15.4).

- 15.7. Установка начального выходного сигнала и проверка вариации и основной погрешности датчика выполняются при соблюдении следующих условий.
- 15.7.1. Температура окружающего воздуха $(23\pm2)^{\circ}$ С при относительной влажности от 30 до 80% и атмосферном давлении от 84 до 106,7 кПа (от 630 до 800 мм рт. ст.). Датчик предварительно выдерживают при указанных условиях не менее 3 часов.
- 15.7.2. Должно быть исключено влияние на работу датчика следующих факторов: вибрации, тряски, наклонов датчика, колебаний давления окружающего воздуха, внешних электрических и магнитного полей кроме земного.
- 15.7.3. Напряжение питания ($24 \pm 0,48$)В постоянного тока при пульсации напряжения питания не более 0,5% значения напряжения питания.
- 15.7.4. Выдержка преобразователя перед началом поверки после включения питания должна быть не менее 30 минут.
- 15.7.5. Электрическое подключение датчиков при поверке должно соответствовать схемам, указанным в приложениях В и Д а также рис. 5.
 - 15.7.6. Нагрузочное сопротивление- в пределах, указанных в п.3.7.
 - 15.7.7. Среда, используемая для задания давления:
 - для датчиков с верхним пределом до 2,5Мпа (25кгс/см²) включительно- воздух или нейтральный газ;
- для датчиков с верхним пределом более 2,5Мпа (25кгс/см²) жидкость. Допускается использование жидкости при поверке датчиков КОРУНД-ДИ, -ДДИ, КОРУНД-хх-001 с верхним пределом от 0,4 до 2,5МПа (от 4 до 25кгс/см²).
- для датчиков, предназначенных для работы с газообразным кислородом воздух или вода, не загрязненные маслом и органическим примесями.
- 15.7.8. Настройка выходного сигнала датчика должна производиться при отсутствии взрывоопасной смеси в месте его установки.
 - 15.8. Установка начального выходного сигнала датчика.
- 15.8.1. Установка начального сигнала датчика выполняется для настройки на рабочий диапазон. Поэтому, при настройке следует учитывать реальные условия работы датчика. Настройка начального сигнала может проводиться на месте эксплуатации во взрывобезопасных условиях.
- 15.8.2. Установку начального сигнала датчиков КОРУНД-ДИ, ДИВ, ДР, ДД, ДДИ, ДДИВ, ДДР следует выполнять, настраивая сигнал при «нулевом» избыточном давлении и соединяя «минусовую» камеру датчиков КОРУНД-ДД с атмосферой (см. п.5.2.3). При таком способе настройки сигнал датчиков разрежения установится на верхнем пределе. Сигнал же датчиков давления-разрежения установится в середине диапазона при симметричных пределах измерений и со смещением,- при несимметричных верхнем и нижнем пределах (см. приложение Б2).
- 15.8.3.Начальный сигнал датчиков КОРУНД-ДА, ДДА проверяется при подаче вакуума или атмосферного давления на вход датчика. Вакуум и атмосферное давление измеряется образцовыми приборами, обеспечивающими настройку и оценку начального сигнала с допустимой погрешностью (см.п.15.9).
- 15.8.4. Перед установкой проверяемых сигналов датчика, следует подать и сбросить на его входе давление, составляющее 50-100% верхнего предела измерений.
 - 15.8.5. Перед установкой начального значения выходного сигнала, измерительные камеры

датчиков с верхним пределом не более 250кПа, в том числе дифференциальных мембранно-рычажных датчиков (см. Рис.2 и 3) должны быть осушены продувкой сухим воздухом.

- 15.9. Проверка основной погрешности и вариации
- 15.9.1.Основную погрешность определяют сравнением значений измеряемой величины, полученных образцовыми средствами и поверяемыми датчиками.
- 15.9.2. Для определения основной погрешности применяется способ, при котором с помощью образцового прибора на входе датчика задают измеряемое давление (или разность давлений), равное номинальному, а с помощью другого образцового прибора измеряют выходной сигнал датчика. Заданное и измеренное значения сравнивают, приведя их к одним и тем же единицам.
- 15.9.3. Допускается определять основную погрешность путем сравнения выходных сигналов поверяемого и образцового датчиков при подаче на их вход расчетного давления от одного источника.
- 15.9.4. Приборы для проведения поверки датчика (см. приложение Е) должны быть подключены к датчику в соответствии с приложением Д.
- 15.9.5. Значения и отклонения выходного сигнала определяют по показаниям образцового вольтметра, измеряющего напряжение U на образцовом сопротивлении нагрузки Rн, соответствующем требованиям п. 15.7.7.

Для датчиков с токовым сигналом 4-20мA и 0-5мA значение сигнального тока I определяется по формуле

$$I = U/R_{H_s} \tag{15.1}$$

При этом образцовое сопротивление нагрузки (Rн) рекомендуется выбирать из ряда:

- 50- 250Ом- для сигнала 4-20мА, 0-20 мА;
- 100-1000Ом- для сигнала 0-5мА;

Класс точности образцового сопротивления должен быть не хуже 0,02%.

15.9.6.При выборе образцовых приборов должно соблюдаться следующее условие:

$$(\Delta P/DP + \Delta U/DU + \Delta R_H/R_H) \bullet 100 \leq C^*\gamma, \tag{15.2}$$

где ΔP , ΔU , ΔR_H – пределы допускаемой абсолютной погрешности образцовых манометра, вольтметра и сопротивления (RH) соответственно;

DP- диапазон измерений поверяемого датчика, равный разности верхнего (Pmax) и нижнего (Pmin) пределов измерений с соответствующими знаками (для разряжения Pmin- со знаком минус);

DU- номинальный диапазон выходного сигнала, равный разности верхнего (Umax) и нижнего (Umin) номинальных значений сигнала датчика на образцовом сопротивлении:

$$DU = Umax - Umin; (15.3)$$

С- коэффициент, равный 0,25 или, при затруднениях в обеспечении этого значения, -не более 0,33; γ -предел допускаемой основной погрешности датчика, %

- 15.9.7. Непосредственно перед проверкой основной погрешности датчика следует проверить и, при необходимости скорректировать начальный выходной сигнал датчика в соответствии с заданным начальным давлением.
- 15.9.8. Основную погрешность датчика проверяют по относительному отклонению (γ_0) действительного значения выходного сигнала от расчетного значения при повышении (прямом ходе) и понижении (обратном ходе) давления, задаваемого с помощью образцового прибора в фиксированных точках диапазона.
- 15.9.9. Основная погрешность датчика должна определяться по всей совокупности отклонений, полученных при М=3-5 циклах повышения-понижения давления, задаваемого в N=5-7 контрольных точках рабочего диапазона, включая его нижний и верхний пределы. Контрольные точки должны быть равномерно распределены по диапазону (по возможности, с постоянным интервалом). При этом, задаваемые значения давления в контрольных точках при прямом и обратном ходе должны совпадать или, если это условие выполнить не удается, могут отличаться не более, чем на 5% диапазона.

Отклонение (γ_0) при повышении (γ_0) и понижении (γ_0 ") давления определяется для каждой і-той (i=1...N) точки каждого j-того цикла (j=1...M) по формулам:

$$\gamma_0' = 100 \bullet (U' - Up)/DU$$
, % (15.4)

$$\gamma_0$$
"=100•(U"-Up)/DU, % (15.5),

где U' и U''- действительные значения напряжения выходного сигнала датчика на сопротивлении нагрузки при повышении (приближении к значению «снизу») и понижении (приближении к значению «сверху») давления, соответственно;

Up-расчетное значение напряжения выходного сигнала, соответствующее номинальному измеряемому давлению. При использовании способа, указанного в п. 15.9.2, в качестве расчетного значения Up принимается значение сигнала датчика по образцовому прибору;

DU- расчетное значение диапазона выходного сигнала (15.2)

Примечание. Отклонения (γ_0) могут определяться с использованием единиц тока по формулам, подобным выражениям (15.4) и (15.5)

$$\gamma'_0 = 100*(I'-Ip)/DI, \%$$
 (15.6)

$$\gamma_0$$
"=100*(I"-Ip)/DI, % (15.7),

где І' и І"- действительные значения тока выходного сигнала датчика на сопротивлении нагрузки при повышении и понижении давления, соответственно;

Ip - расчетное значение тока выходного сигнала, соответствующее номинальному измеряемому давлению;

DI- номинальный диапазон токового выходного сигнала, равный разности верхнего (Imax) и нижнего (Imin) номинальных значений сигнального тока датчика на образцовом сопротивлении:

$$DI = Imax - Imin (15.8)$$

- 15.9.10. В контрольных точках необходимо выдерживать датчик (до 5 минут) для стабилизации показаний. Если показания не стабилизируются, следует проверить и устранить негерметичность системы или прекратить поверку датчика.
- 15.9.11.Оценку основной погрешности производят по максимальному абсолютному значению отклонения (γ_0), вычисленному по формулам (15.4) и (15.5) или (15.6) и (15.7). Максимальное значение основной погрешности поверяемого датчика должно соответствовать условию:
 - $\max (\gamma_0) \le 0.8 y$ при первичной поверке;
 - $\max (\gamma_0) \le y$ при периодической поверке,

где у- предел допускаемой основной погрешности поверяемого датчика согласно приложению Б.

- 15.9.11.Вариация (гистерезис) выходного сигнала Н определяется как разность значений выходного сигнала, соответствующих одному и тому же значению измеряемой величины, полученных при приближении к нему как «сверху» (т.е. от больших значений), так и «снизу» (т.е. от меньших значений). Вариация должна проверяться при каждом задаваемом образцовом (контрольном) давлении, за исключением верхнего и нижнего пределов.
- 15.9.12. Оценку вариации (h) в процентах от номинального диапазона изменения выходного сигнала производят по одной из формул

$$h = 100 \bullet |(U'-U'')|/DU, \%;$$
 (15.9)

$$h = 100 \bullet |(I'-I'')|/DU, \%;$$
 (15.10)

$$h = |\gamma_0" - \gamma_0'| \tag{15.11}$$

- по всей совокупности N контрольных точек (кроме верхних и нижних пределов), полученных при M циклах повышения-понижения давления. При этом расчетное значение вариации h не должно

превышать допускаемое значение, указанное в п.3.3.

- 15.9.13. При оценке основной погрешности и вариации, допускается отбрасывать до 5% результатов измерений, которые могут быть причиной субъективных ошибок и выбросов (например, скачков напряжений, показаний).
- 15.10. При положительных результатах поверки, в паспорте (или документе, его заменяющем) производят запись о годности датчика к применению с указанием даты поверки и удостоверяют запись в установленном порядке.
- 15.11. Датчики, не соответствующие требованиям настоящего руководства, считают не прошедшими проверку и не допускают к применению. При этом в паспорте делается соответствующая запись.

16. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 16.1. Техническое обслуживание (ТО) должны выполнять лица, изучившие настоящий документ, прошедшие соответствующий инструктаж и допущенные к выполнению ТО.
- 16.2. При техническом обслуживании должны соблюдаться правила безопасности, а также технологические требования, указанные в разделах 10-15 и принятые на предприятии, эксплуатирующем датчики.
- 16.3.Для поддержания работоспособного состояния датчика и его внешних соединений предусматриваются текущее или оперативное (ТТО) и периодическое или плановое (ПТО) техническое обслуживание, в процессе которого выполняются следующие основные операции:
 - проверка внешнего состояния и функционирования датчика, его внешних соединений и линий;
- при необходимости, корректировка «нуля» датчика, слив конденсата или удаление воздуха из рабочих камер датчика и устройств (сосудов, вентилей и линий), подводящих давление;
 - периодическая проверка работоспособности и поверка датчика.

Кроме указанных операций, к техническому обслуживанию относятся расконсервация, очистка и консервация, изделий перед их использованием и в период эксплуатации.

- 16.4. Порядок технического обслуживания
- 16.4.1.Текущее (оперативное) техническое обслуживание (ТТО) предполагает систематический внешний осмотр датчика по п.п. 12.4-12.6, 15.5 а также оперативную проверку функционирования и технического состояния датчика, устройств, подводящих давление, электрических линий и соединений.
- При TTO могут выполняться, в основном, простые восстановительные операции, не связанные с ремонтом и заменой датчика.

Если установлена необходимость ремонта, следует оформить рекламацию, демонтировать датчик и отправить его на ремонт (раздел 17).

TTO выполняется оператором или дежурным персоналом с регулярностью, определяемой состоянием и работой датчика и системы, в которой он применяется.

В оперативном порядке контролируют реакцию сигнала датчика при изменении рабочего давления среды, при необходимости, сливают конденсат или удаляют воздух из рабочих камер датчика и выполняют другие операции по поддержанию нормального режима эксплуатации датчика.

16.4.2. При ПТО производят:

- 1) профилактический осмотр датчика и его подсоединений (см. п.п. 12.4-12.6 и 15.5);
- 2) проверку и, при необходимости, восстановление работоспособности датчика, линий давления, электрических линий и соединений, подстройку «нуля» датчика (см. п.п. 11.5,14.6 и 14.8);
 - 3) поверку (см. раздел 14) и техническое освидетельствование датчика;

При проведении этих работ определяют необходимость замены или ремонта датчика.

Работы, указанные в п.п. 1), 2) и 3), выполняются специально подготовленным персоналом с квалификацией, соответствующей технической задаче.

Периодичность работ, указанных в п.п. 1), 2) и 3), определяется предприятием, но не реже 1 раза в 5-7 месяцев, за исключением экстренных случаев. В начальный период эксплуатации (приработки) рекомендуется проводить профилактические работы 1-2 раза в месяц, выполняя, при необходимости корректировку «нуля» датчика.

Поверка должна выполняться представителями метрологической службы или лицами

допущенными к поверке датчиков с периодичностью, определяемой предприятием, но не реже указанной в разделе 15.

Техническое освидетельствование выполняется представителями инспекции и надзора за взрывобезопасными средствами измерений, электроустановками и оборудованием предприятия с периодичностью, устанавливаемой предприятием в соответствии с действующими нормами. Техническое освидетельствование рекомендуется совмещать с поверкой. Состав представителей инспекции и надзора определяется потребителем в зависимости от конкретных условий эксплуатации и норм, действующих на предприятии.

- 16.5. Профилактические работы, проверка состояния и работоспособности датчика при ПТО.
- 16.5.1.При профилактическом осмотре проверяют:
- 1) целостность корпуса и крепежа;
- 2) сохранность пломб;
- 3) наличие маркировки взрывозащиты;
- 4) состояние заземления. Болты заземления должны быть затянуты, а контактные площадки зачищены;
- 5) целостность кабеля и его внешних соединений и уплотнений, отсутствие короткого замыкания цепей линии связи. Уплотнения должны быть затянуты или герметизированы в местах, где это предусмотрено конструкцией датчика и условиями монтажа. При наличии повреждений и коротких замыканий кабель следует заменить;
- 6) плотность и герметичность соединений датчика с линией давления. Неплотные соединения должны быть затянуты и уплотнены;
 - 7) прочность крепления датчиков (на кронштейнах и т.п.). Резьбовые соединения должны быть затянуты;
 - 8) температурный режим работы датчиков.

Эксплуатация датчиков с неисправностями запрещается.

- 16.5.2. При проверке состояния и работоспособности датчика, необходимо выполнить следующие операции.
 - 16.5.2.1. Проверить наличие и стабильность сигнала при постоянном давлении и его реакцию на изменение давления. При нарушениях нормального режима датчика следует проверить и восстановить рабочее состояние линий давления (см. п.16.5.2.2) и электрических линий (см.п.16.5.2.3), проверить герметичность (см. п.15.5.2.4), подстроить «ноль» датчика. Если настроить нормальный режим не удается,- произвести внеплановую поверку (см. разд. 14) и (или) отправить датчик на ремонт (разд.16).
 - 16.5.2.2. Проверить вентили и подводящие линии на отсутствие загрязнений, пробок, конденсата или пузырьков газа (пара). При их наличии произвести очистку, слив жидкости, промывку и (или) продувку линий, полостей и камер, не допуская перегрузку датчиков.
 - 16.5.2.3. Проверить состояние электрической линии связи, заземления, внешних соединений с датчиком и, при необходимости, восстановить их рабочее состояние, отключив питание и соблюдая другие требования взрывобезопасности.
 - 16.5.2.4. Проверить герметичность датчика и устройств (в том числе линии) подводящих давление к датчику в соответствии с п.15.6.2. При необходимости, устранить негерметичность затяжкой крепежа, заменой уплотнительных и других элементов.
 - 16.5.2.5. Отключив датчик от источника питания и вскрыв крышку корпуса, проверить состояние контактов клемм и разъема а также сопротивление изоляции электрических цепей (сигнальных контактов) относительно корпуса датчика. Сопротивление изоляции должно быть не менее 20 MOM при температуре окружающего воздуха ($+25\pm5$) $^{\circ}$ С и относительной влажности не более 80%. Клеммы и контакты очистить и промыть для обеспечения надежности соединений. Закрыть и опломбировать датчик.
- 16.5.2.6. Проверить и, при необходимости, открыть крышку корпуса и подстроить начальный (контрольный) выходной сигнал датчика при начальном (контрольном) значении давления в соответствии с п.15.8. Закрыть и опломбировать датчик.
 - 16.5.3. При ТО применяются технические средства, указанные в приложении Е, или заменяющие их.
 - 16.5.4.Датчики не допускаются к дальнейшей эксплуатации, если их параметры, после ТО, выходят за пределы, установленные настоящим руководством.

Такие датчики, следует отправить на поверку или в ремонт, оформив соответствующую рекламацию на текущий или капитальный ремонт или на списание. Капитальный ремонт выполняется службой изготовителя

17. ТЕКУЩИЙ РЕМОНТ

17.1. Общие указания

- 17.1.1. Текущий ремонт датчиков выполняется:
- ремонтной службой предприятия-потребителя после отказов, связанных с нарушением контактов, соединяющих датчик с линией связи;
- ремонтной службой изготовителя после более сложных отказов, связанных с ремонтом и заменой составных частей датчика электронных узлов и элементов, тензопреобразователя и других элементов.

Ремонтная служба предприятия должна установить признаки и предполагаемые причины отказа датчика и оформить дефектную ведомость (рекламацию) для ремонта своими силами, дальнейшего учета и (или) передачи ремонтной службе изготовителя.

17.1.2. К ремонтным работам допускаются лица, изучившие настоящий документ, прошедшие соответствующий инструктаж и допущенные к выполнению ремонта.

17.2. Меры безопасности

- 17.2.1. При демонтаже и монтаже, подготовке и ремонте датчиков должны соблюдаться правила безопасности, а также технологические требования, указанные в разделах 9-14 и принятые на предприятии, эксплуатирующем датчики.
- 17.2.2. Ремонт должен проводиться в помещениях, при условиях и рабочих средах, отвечающих условиям взрывобезопасности.
 - 17.3. Возможные характерные отказы и методы их устранения при текущем ремонте указаны в таблице 17.1

Таблица 17.1

Описание последствии отказов и повреждений	Возможные причины	Указания по устранению последствий отказов и повреждений
1. Отсутствует или	1.1.Обрыв линии связи, нарушение	1.1.1.Проверить линию связи и соединения,
периодически	соединений	клеммы, разъем датчика. Восстановить связь и
пропадает сигнал		контакты.
	1.2. Отказ блока питания	1.2.1. Проверить и восстановить или заменить
		блок питания.
2. Сигнал	2.1. Загрязнение, увлажнение	2.1.1. Очистить, просушить контакты
нестабилен (дрейф	контактов соединений,	соединения
сигнала)	2.2. Негерметичность датчика,	2.2.1. Проверить герметичность датчика и
	обвязки.	обвязки. Устранить негерметичность обвязки.
		Отправить датчик на ремонт изготовителю по
		рекламации.
	2.3. Нарушение изоляции линии	2.3.1. Восстановить изоляцию кабеля или
	связи (кабеля).	заменить его.
	2.4.Отказ тензопреобразователя	2.4.1. Отправить датчик на ремонт изготовителю
	(мембранного блока)	по рекламации.
3. Сигнал смещен и	3.1. Смещение «нуля»	3.1.1. Подстроить ноль.
не соответствует		3.1.2. Выполнить внеплановую поверку с
давлению		проверкой погрешности, подстройкой «нуля» и,
(зашкаливает или не		при необходимости, диапазона.
устанавливается	3.2. Нарушилась изоляция линии	3.2.1. Восстановить изоляцию и соединения.
верхний предел или	(кабеля, соединений)	
«ноль»)	3.3. В рабочей камере датчика и	3.3.1. Очистить, продуть, промыть камеры
	(или) в обвязке конденсат,	датчика, обвязку.
	загрязнения, пузырьки воздуха	

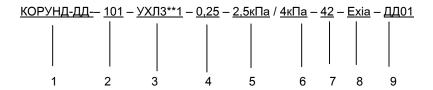
- 17.1. Выполняемые ремонтные работы должны фиксироваться в паспорте датчика или сопроводительном документе, что необходимо для учета отказов и работоспособности датчика.
- 17.2. Ремонтные работы, требующие вскрытия пломб и разборки датчика, в период действия гарантии выполняются ремонтной службой изготовителя.

После окончания гарантийного срока такие работы могут выполняться на предприятии-потребителе или, по его заказу- предприятием- изготовителем.

18. ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

- 18.1. Преобразователи транспортируются всеми видами транспорта, в том числе воздушным транспортом в отапливаемых герметизированных отсеках. Способ укладки ящиков с изделиями должен исключать возможность их перемещения.
 - 18.2. Условия транспортирования должны соответствовать условиям хранения 5 по ГОСТ 15150-69.
- 18.3. Изделия могут храниться как в транспортной таре, с укладкой по 5 ящиков по высоте, так и в потребительской таре на стеллажах.

Условия хранения преобразователей в транспортной таре соответствует условиям хранения 3 по ГОСТ 15150-69. Условия хранения преобразователей в потребительской таре - 1 по ГОСТ15150-69.


Срок пребывания преобразователей в условиях транспортирования - не более трех месяцев.

18.4. При транспортировании и хранении следует предусматривать меры безопасности при размещении изделий, иключающие повреждение изделий и травматизм.

19. УТИЛИЗАЦИЯ

- 19.1. При утилизации следует соблюдать правила безопасности демонтажа, принятые на предприятии- потребителе (см. разделы 10-15).
 - 19.2. При утилизации датчиков следует выполнить следующие операции:
- 19.2.1. Определить непригодность датчиков к дальнейшей эксплуатации, оформив соответствующий акт (на списание и т.п.).
 - 19.2.2. Разобрать датчики на поддающиеся разборке составные части:
- 1) штуцер, корпус, крышку, разъем, тензопреобразователь, модуль электроники малогабаритных датчиков;
- 2) мембранный блок, фланцы, корпусные части, кабельную муфту и плату блока электроники дифференциальных датчиков.
- 19.2.3. Вскрыть (по возможности) полость мембранного блока дифференциального датчика и слить заполняющую (полиметилсилоксановую) жидкость в металлический, стеклянный или пластмассовый сосуд, после чего закупорить сосуд крышкой.
 - 19.2.4. Разделить составные части по группам:
 - 1) металлические части;
 - 2) тензопреобразователи;
 - 3) разъемы, коннекторы;
 - 4) электронные платы и компоненты.
- 19.2.5. Определить внешний вид и возможность использования для ремонта или восстановления отдельных составных частей предприятием- потребителем или изготовителем. Согласовать с изготовителем возможность и условия передачи ему частей, которые не представляют ценности для потребителя. Передать их изготовителю с сопроводительными документами, включающими паспорт, рекламационные и другие записи. Подобное взаимодействие с изготовителем позволит накопить данные по работоспособности датчиков и совершенствовать их конструкцию.
- 19.2.6. Определить необходимость и условия утилизации оставшихся составных частей и жидкости разобранных датчиков и отправить на дальнейшую утилизацию с описью комплекта.

СХЕМА СОСТАВЛЕНИЯ УСЛОВНОГО ОБОЗНАЧЕНИЯ ДАТЧИКА

- 1- Наименование датчика (по табл.Б1 и Б2 приложения Б)
- 2- Номер модели датчика (по табл.Б1 и Б2 приложения Б)
- 3- Климатическое исполнение (см. п.2.5)
- 4- Допускаемая основная погрешность (по табл. Б1 и Б2 приложения Б)
- 5- Предел измерений или верхний/нижний пределы измерений-для ДДИВ и ДИВ (по табл. Б1 и Б2 приложения Б)
- 6- Предельно допустимое рабочее избыточное давление (по табл.Б1 и Б2 приложения Б)
- 7- Код выходного сигнала (42- для 4-20мА; 05- для 0-5мА; 02 –для 0-20 мА)
- 8- Взрывобезопасное исполнение (см. п.3.8)
- 9- Код монтажных частей (по табл. 1,2)

НАИМЕНОВАНИЕ, МОДЕЛЬ И ОСНОВНЫЕ ПАРАМЕТРЫ ДАТЧИКОВ (табл.Б1 и Б2) Таблица Б1- Датчики КОРУНД-ДД, ДИ, ДА, ДР, ДДИ, ДДА, ДДР

Тип	Модель	Ряд верхних пределов измерений (Рв)	Предельное допускаемое рабочее давление*	Предел допускаемой основной погрешности, %	
Датчики разн	ости давлений (ДД)			
	101	0,25; 0,4; 0,63; 1; 1,6 кПа	0,1МПа	0,5; 1	
	102	2,5; 4; 6,3;10 кПа	4МПа	0,25; 0,5; 1	
КОРУНД-ДД	103	6,3; 10; 16; 25; 40 кПа	16МПа		
	104	40; 63; 100; 160; 250 кПа	16МПа		
	105	0,4; 0,63; 1; 1,6; 2,5 МПа	4МПа		
	106	2,5; 4; 6,3; 10; 16 МПа	25МПа		
Датчики избы	точного давлен				
	111	0,25; 0,4; 0,63; 1,0; 1,6 кПа	2.5кПа	0,5; 1	
	112	2,5; 4; 6; 10 кПа	15кПа		
КОРУНД-ДДИ	113	6; 10; 16; 25; 40 кПа	60кПа	0,25; 0,5; 1	
ког этід-дди	114	40; 60; 100; 160; 250 кПа	400кПа		
	115	0,4; 0,6; 1; 1,6; 2,5 МПа	4МПа		
	116	2,5; 4; 6; 10; 16 M∏a	25МПа		
КОРУНД-ДИ,	117	40; 60; 100; 160; 250 кПа	400кПа**	0.15,0.25, 0.5, 1	
КОРУНД-ДИ-001	118	0,4; 0,6; 1; 1,6; 2,5 МПа	4МПа**		
	119	2,5; 4; 6; 10; 16 M∏a	25МПа**		
Датчики разр	ежения (ДДР, Д	P)			
	121	0,25; 0,4; 0,6; 1; 1,6 кПа	2.5кПа	0,5; 1	
КОРУНД-ДДР	122	2,5; 4; 6; 10 кПа	15кПа		
ког упд-ддг	123	10; 16; 25; 40 кПа	60кПа	0,25; 0,5; 1	
	124	40; 60; 100 кПа	106,7 кПа		
КОРУНД-ДР, КОРУНД-ДИ-001	125	40; 60; 100 кПа	106,7 кПа	0,25; 0,5; 1	
Датчики абсо	лютного давлен	ия (ДДА, ДА)			
K∪D/HU⁻UUV	141	2,5; 4; 6; 10 кПа	15кПа	0,5; 1	
КОРУНД-ДДА	142	6; 10; 16; 25; 40 кПа	60кПа	- 0,0, 1	
	143	40; 60; 100; 160; 250 кПа	400кПа	0,25; 0,5; 1	
КОРУНД-ДА	144	40; 60; 100; 160; 250 кПа	400кПа**		
ког упд-да	145	0,4; 0,6; 1; 1,6; 2,5 МПа	4МПа**	0,25;0,5; 1	
	146	2,5; 4; 6; 10; 16 МПа	25МПа**		

Примечания.

¹⁾ Для выбранной модели указывается одно значение из приведенного для нее ряда пределов и погрешностей.

²)* Предельное допускаемое рабочее давление: избыточное – для датчиков ДД, ДДИ, ДИ; абсолютное-для датчиков ДДА и ДА; разряжение – для датчиков ДДР и ДР.

^{3)**} Для датчиков КОРУНД-хх-001 указанное предельное допускаемое рабочее давление увеличивается в 1.5 раза.

Таблица Б2- Датчики Корунд ДДИВ, ДИВ

		Ряд пределов измерений		Допускаемое	Предел
		Разрежение	Верхниий предел	давление	допускаемой
Тип	Модель	(отрицательное	избыточного	перегрузки	основной
		избыточное	давления, кПа, Рв	(избыточное,	погрешности
		давление), кПа, Ррв		разрежение)	
	131	0,125	0,125		
КОРУНД-ДДИВ		0,2	0,2	Рв=1,25кПа;	
		0,3 (0,315)*	0,3 (0,315)*	Ррв=1,25кПа	0,5; 1
		0,5	0,5		
		0,8	0,8		
	132	1,25	1,25		
		2	2	Рв=7,5кПа; Ррв=7,5кПа	0,25;0,5;1
		3 (3,15)*	3 (3,15)*		0,23,0,3,1
		5	5		
	133	5	5		
		8	8	Рв=30кПа; Ррв=30кПа	0,25;0,5;1
		12,5	12,5		
		20	20		
КОРУНД-ДИВ	134	20	20	Рв=150кПа;	
		30 (31,5)*	30 (31,5)*	Ррв=150кПа	0,25;
		50	50	T pb Tooki id	0,5; 1
		100	60		3,3, 1
		100	100		
	135	100	300		
		100	500	Рв=150кПа;	0,25;
		100	900	Ррв=150кПа,	0,5; 1
		100	1500		5,5, .
		100	2400		

Примечания.

^{1.} Для каждой модели указывается по одному значению из приведенного для нее ряда пределов (диапазонов) и погрешностей.

^{2.} Пределы * настраиваются по специально согласованному заказу.

СХЕМА ВНЕШНИХ ЭЛЕКТРИЧЕСКИХ СОЕДИНЕНИЙ ДАТЧИКОВ

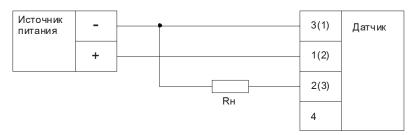


Рис.В1. Схема соединения датчиков КОРУНД с выходным сигналом 0-5 мA, 0-20 мA.

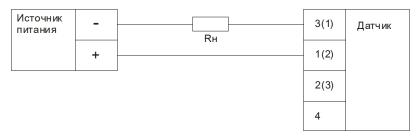


Рис.В2. Схема соединения датчиков КОРУНД с выходным сигналом 4-20 мА.

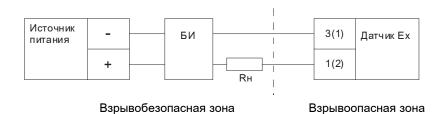


Рис.В4. Схема соединений датчиков КОРУНД искробезопасного исполнения с внешним барьером искрозащиты (БИ).

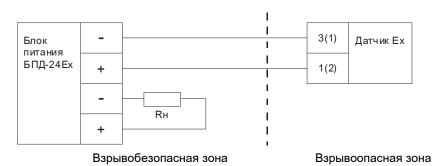


Рис.В5. Схема соединений датчиков КОРУНД искробезопасного исполнения с блоком питания, имеющим встроенный барьер искрозащиты.

Примечание. Rн - нагрузочное сопротивление по п.3.7

В скобках номера контактов разъема датчика старого исполнения

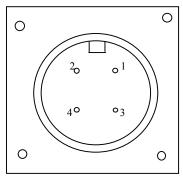


Рис.В6а. Схема размещения контактов разъема РС-4 датчиков КОРУНД-ДИ, ДА,ДР,ДИВ (старое исполнение)

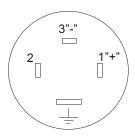


Рис.В6б. Схема размещения контактов коннектора датчиков КОРУНД

ГАБАРИТНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕРАЗМЕРЫ ДАТЧИКОВ «КОРУНД»

Рис.Г1а.- Габаритный чертеж датчика КОРУНД-ДИ, ДА, ДР, ДИВ. Модели 117-119; 125; 144-146; 134-135. Ниппельный соединитель.

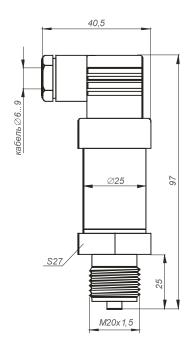


Рис.Г1б.- Габаритный чертеж датчика КОРУНД-(ДИ, ДА, ДР, ДИВ)-001. Модели 117001-119001; 125001; 144001-146001; 134001-135001.

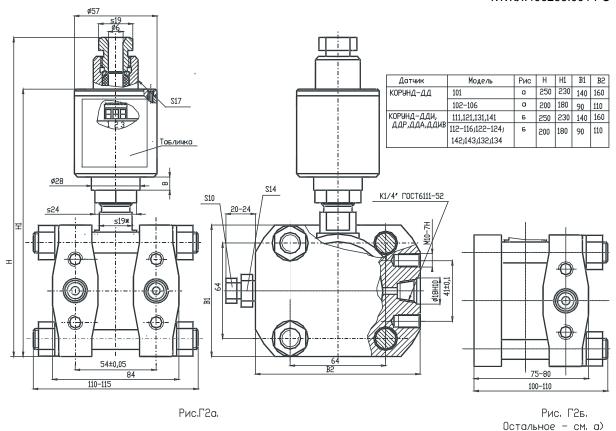


Рис. Г2- Габаритный чертеж датчика Корунд-ДД, ДДИ, ДДА, ДДР, ДДИВ. Модели 101-106, 111, 121, 131, 141, 112-116, 122-124, 132, 134, 142, 143

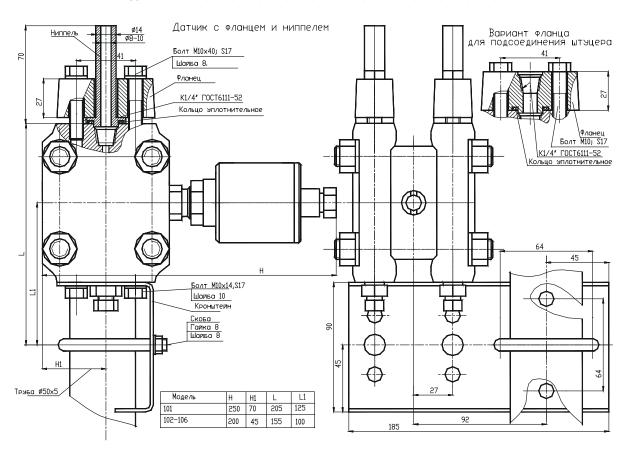


Рис.Г3. Монтажный чертеж датчика КОРУНД-ДД. Модели 101-106

КТЖЛ.406233.001 РЭ

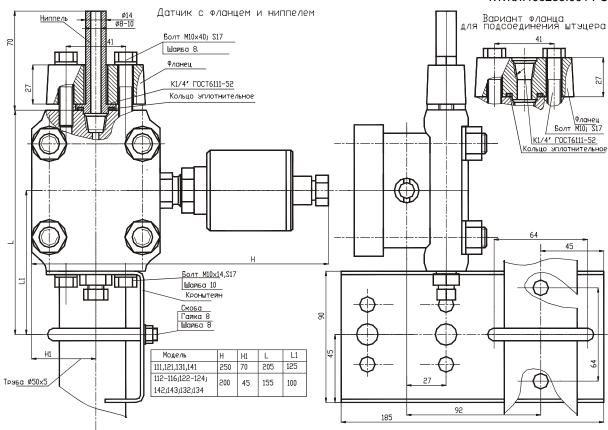


Рис.Г3. Монтажный чертеж датчика КОРУНД-ДД. Модели 111-116, 121-124,131-134,141-143.

СХЕМЫ ВКЛЮЧЕНИЯ ПРЕОБРАЗОВАТЕЛЕЙ ПРИ ОПРЕДЕЛЕНИИ ОСНОВНОЙ ПОГРЕШНОСТИ И ВАРИАЦИИ

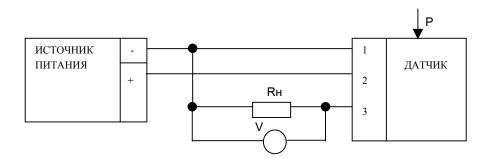


Рис.Д1. Схема подключения датчика КОРУНД-ДИ, ДА, ДР, ДИВ,КОРУНД-хх-001 с выходным сигналом 0-5 мА, 0-20 мА.

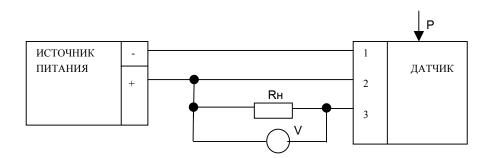


Рис.Д2. Схема подключения датчика КОРУНД-ДД, ДДИ, ДДА, ДДР, ДДИВ с выходным сигналом 0-5 мA, 0-20 мA.

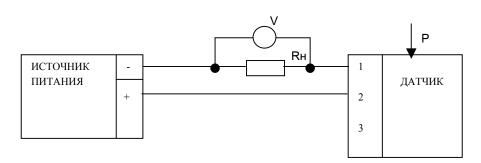


Рис.Д3. Схема подключения датчика КОРУНД-ДД, ДДИ, ДДА, ДДР, ДДИВ с выходным сигналом 4-20 мА.

ПЕРЕЧЕНЬ ОБОРУДОВАНИЯ И КОНРОЛЬНО-ИЗМЕРИТЕЛЬНОГО ПРИБОРОВ, НЕОБХОДИМЫХ ДЛЯ ПОВЕРКИ ПРЕОБРАЗОВАТЕЛЕЙ.

- 1. Магазин сопротивлений Р33, ГОСТ23737-79. Класс точности 0,2. Сопротивление до 99999,9 Ом.
- 2. Цифровой вольтметр Щ1516, ТУ25-04.2787-75. Класс точности 0,015. Верхний предел измерений 5 В.
- 3. Магазин сопротивлений Р4831, ТУ2504.3919-80. Класс точности 0,02/2. Сопротивление до 11111,1 Ом.
- 4. Источник постоянного напряжения. Тип Б5-44. ТУ4Е83.233219-78. Напряжение 0-40 В.
- 5. Манометр грузопоршневой МП-2,5, ГОСТ8291-83. IYI = 0.05% от измеряемого давления в диапазоне от $25 \, \text{к}$ Па до $2.5 \, \text{M}$ Па.
- 6. Манометр грузопоршневой МП-6, ГОСТ8291-83. IYI = 0,05% от измеряемого давления в диапазоне от 0,06 до 0,6 МПа.
- 7. Манометр грузопоршневой МП-60, ГОСТ8291-83. IYI = 0,05% от измеряемого давления в диапазоне от 0,6 до 6 МПа.
- 8. Манометр грузопоршневой МП-600, ГОСТ8291-83. IYI = 0,05% от измеряемого давления в диапазоне от 6 до 60 МПа.
- 9. Манометр грузопоршневой МП-2500, ГОСТ8291-83. IYI = 0.05% от измеряемого давления в диапазоне от 25 до 250 МПа.
- 10. Преобразователи давления измерительные ИПД. IYI = 0.06%; 0.1%; 0.15% для пределов измерений от 0.16 до 16 МПа.
- 11. Комплекс для измерения давления цифровой ИПДЦ. IYI = 0,06%; 0,1%; 0,15% для пределов измерений от 0,16 до 16 МПа.
- 12. Манометр для точных измерений МТИ. IYI = 1,0%. Пределы измерения от 0,25 до 160 МПа.
- 13. Ампервольтметр P-386, ТУ2504.1690-77. IYI = 0,05% (постоянный ток до 100мA); IYI = 0,5% (напряжение переменного тока 300 B).
- 14. Осциллограф электронно-лучевой С1-76, ГОСТ9829-81, чувствительность не ниже 0,2 мВ/см.
- 15. Мегаомметр М4100/1, ГОСТ23706-79, напряжение 100 В.
- 16. Термометр стеклянный ртутный. Пределы измерения 0-100 $^{\circ}$ С. Погрешность не ниже ± 2 $^{\circ}$ С.
- 17. Штангельциркуль, ГОСТ166-89.Верхний предел измерения 250 мм. Цена деления 0,1 мм.
- 18. Климатическая камера 3001. ГДР. Температура от -70 до+90°C, погрешность поддержания температуры 1 °C, относительная влажность до 98%.
- 19. Камера тепла и холода КТХ 0,4-65/155. Я7М2.708.022 ТУ. Температура от -65 до +155 °C.
- 20. Осциллограф шлейфовый ГОСТ9829-81. Рабочая частота 200-1000 Гц, чувствительность по току 20 мм/мА.
- 21. Частотомер 43-36, ТУ ДЛИ2.721.007.

Примечание.

Допускается использование другого испытательного оборудования и образцовых средств измерений, с характеристиками не хуже указанных.